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Extreme value wave climate analysis at a particular site requires predicting long-term wave height levels from 
short duration records. In the present work we used the Peak Over Threshold (POT) model, assuming the 
frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the spatial variability of 
the long-term extreme value wave climate along the Balearic Sea. Wave data used is part of the HIPOCAS 
database, a 44-years high resolution, spatial and temporal, wave hindcast, covering an area between 38ºN-42ºN 
and 1ºW-6ºE, of the western Mediterranean Sea. The use of data from a homogeneous grid, instead of a single 
location wave data record, allows describing the spatial variability of the long-term extreme wave height levels, 
over the whole Balearic Basin. Results show that extreme values for a 50-year return period level around 11 m 
are found in the north sector of the Balearic Islands while in the southern part much lower extreme values are 
found.  This is due to the shadow effect of the islands over the severe north-eastern storms. 
 
ADITIONAL INDEX WORDS: extreme wave climate, HIPOCAS, spatial variability. 

 
INTRODUCTION 

 
Detailed assessment of wave climate is a previous requirement for 
all human activities in the coastal zone. Beach nourishment, port 
design and operability, dispersion and diffusion of pollutants are 
some examples that require a precise knowledge of the long-term 
distribution of significant wave height, Hs, and mean period, Tm, 
as well as the long-term extreme value distribution. On the other 
hand, wave climate analysis requires a large amount of data to 
ensure the statistical significance. These data have been collected 
in the last decades using scalar and directional wave buoys 
moored at specific locations providing high temporal resolution 
records. In the last decade, satellites have been used to overcome 
the spatial lack of data (KROGSTAD AND BARSTOW,  1999) but the 
problem of having a large amount of spatial and temporal wave 
records were still unresolved. 
QUEFFEULOU (2005) used altimeter data to perform an analysis of 
the wave height variability over the Mediterranean Sea but as 
noted for some authors, altimeter data has as a shortcoming its 
temporal inhomogeneity and a coarse spatial resolution in areas 
like the Western Mediterranean, marked by a complex orography. 
Statistical analysis of wave climate has been thus, carried out with 
relatively short data sets, e.g. 10 years of data for the satellite 
altimeters (TOPEX,ERS-1/2) used in the analysis carried out by 
QUEFFEULOU (2005).  
Alternatively, wave generation models are another option to avoid 
the usual lack of data in ocean and atmospheric studies. Models 
are initialized with real conditions and the deviation due to the 
nonlinearity of the governing equations corrected with the 

assimilation of data. Numerical models can be now implemented 
in very fine grids. These hindcast models have become a powerful 
tool not only for engineering or prediction scales but for climate 
studies involving large temporal periods. The 44 years of hourly 
wave data base with 0.125º spatial resolution obtained from 
HIPOCAS project (SOARES et al. 2002) in the Western 
Mediterranean is used in the present work. 
In order to characterize the long-term extreme value distribution 
of significant wave height in the Balearic Sea, we use the Peak 
Over Threshold (POT) method, which is widely used in the 
definition of the extreme behaviour of severe storms. The spatial 
variability of the extreme wave events is obtained determining the 
50-year return period quantile in every node. 
The paper is structured as follows. In the first section, we present 
the wave data as well as the POT model. The next section deals 
with the estimation of the extreme value return levels. The 50-year 
return period levels over the Balearic Sea is presented and 
discussed in the third section. Finally we conclude the work. 
 

 
DATA AND METHODOLOGY 

 
The HIPOCAS data 

 
Wave data is part of the HIPOCAS Project (Hindcast of Dynamic 
Processes of the Ocean and Coastal Areas of Europe).This 
database consists on a high resolution, spatial and temporal, long-
term hindcasted data set (SOARES et al. 2002). This reanalysis, 
covers in an hourly basis a period ranging from 1958 to 2001 
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providing a 44-years of wave data over an homogeneous grid. 
This dataset was produced by means of dynamical downscaling 
from the NCEP/NCAR global reanalysis using the regional 
atmospheric model REMO. Hourly wind fields from the REMO 
(U10) were used as forcing for the third generation wave model 
WAM. As a result, wave data used are the output of the WAM 
model implemented in a 1/8º resolution mesh over the western 
Mediterranean Sea. In this work we cover 1387 nodes in an area 
between 38ºN-42ºN and 1ºW-6ºE (Figure 1). This dataset provides 
the opportunity to perform a significant analysis of return period 
levels at deep waters and their spatial distribution, that can help to 
understand the severity of the storms in this particular area. 
 
The Generalized Extreme Value and Generalized Pareto 
Distribution 
 
The classical approach to perform an extreme value analysis is to 
fit the annual maxima values with the Generalized Extreme Value 
(GEV) cumulative distribution function,  
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where μ is the location parameter, ψ > 0 is the so-called scale 
parameter and ξ is a shape parameter which determines the tail of 
the distribution. When ξ ≈ 0 the GEV distribution corresponds to 
the Gumbel family, conversely for ξ > 0 the Fréchet form is 
adopted and for ξ < 0 the Weibull form is adopted. The annual 
maxima method developed by GUMBEL (1960) considers only the 
largest value for each year. There is some criticism in the use of 
this approach, because using only the maximum value per year 
leads to the loss of information contained in other large–sample 
values for a given period (CASTILLO, 1997). 
 
To solve the problem of working only with a data per year the 
Generalized Pareto Distribution (GPD) was introduced (PICKANDS, 
1975). The GPD method models all values larger than a given 
threshold u. The differences between these values and the 
threshold u are called exceedances over the threshold and it is 
assumed to follow a GPD(σ, ξ) distribution whose Cumulative 
Distribution Function is defined by,  
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where σ>0 is the location parameter, -∞<ξ<∞ is the shape 
parameter and y are the exceedances over the threshold u (y= x-
u>0).  
 
The Poisson-GPD model 
 
A modification to the model defined in Eq.(2) is the Poisson-GPD 
model for exceedances, originally developed by hydrologists, 
which is closely related to the Peaks Over Threshold (POT) 
method. This model is a joint distribution, the GPD, for the 
exceedances values y, and a Poisson distribution for the number of 
exceedances over a level u in any given year. With this model, one 
can estimate not only the intensity of the exceedances but also the 
frequency of these events.  

Therefore we assume that the number, N, of exceedances of the 
level u in any one year has a Poisson distribution with mean λ, and 
the exceedances {yi}N

i=1 are independent and identically 
distributed from the GPD. 

Under these hypothesis, the probability that the annual 
maximum of the GPD-P process is lower than a value x, with x>u, 
is given by,  
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where the Poisson parameter λ, the scale parameter σ and the 
shape parameter, ξ are to be determined. 
 
Parameter estimation  
 
The GPD-P model reduces to the determination of the three 
unknown parameters, λ>0, σ>0 and -∞<ξ<∞. The scale and shape 
parameters arise from the GPD (PICKANDS, 1975) and λ from the 
Poisson distribution. These three parameters are estimated using 
the Maximum Likelihood Method (MLM). The Maximum 
Likelihood Estimators are the values of the unknown parameters 
that maximise the log-likelihood function. In practise these are 
local maxima found by nonlinear optimization.  
The log-likelihood function for the GPD-P, if N exceedances are 
observed over a τ-year period is given by, 
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Maximizing );( kyl θ  respect to θ = (λ, σ, ξ) in the GPD-P leads 
to the maximum likelihood estimate ( )ˆ ˆ ˆˆ, ,θ λ σ ξ= .  

  On the other hand a useful relation between the GEV and GPD-P 
parameters is found in literature (SMITH, 2003), 
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Figure 1. Geographic location of the study area and the 1/8º 
resolution HIPOCAS grid over the Balearic Sea. 
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Then through a simple parameter substitution (eq.5 into eq.4) we 
could express the model in terms of the GEV parameters ( , ,μ ψ ξ ) 
and, consequently, fit the GPD-P model. 
 
Threshold selection and time span for the GPD-P 
 
An important issue when modelling threshold excesses with the 
GPD-P is to choose correctly the threshold value u and the 
minimum time span Δt between successive extreme events. Then 
the extreme events are identified by considering all values larger 
than a given threshold u and with a minimum time span Δt 
between the storms, to ensure the meteorological independence of 
the observed excesses. It is not an easy aspect because it requires a 
balance between bias and variance caused by the selected 
threshold.  If the selected threshold is too low we will violate the 
asymptotic basis of the model, causing bias. On the other hand a 
too high threshold will produce few excesses over the selected 
threshold causing a high variance in the estimated values 
(MENDEZ et al., 2006).   
Some tools are available to choose the “correct” threshold. For 
example an aprioristic test like the mean excess plot (COLES, 
2001) can be used (Figure 2). This test leads to a quick estimation 
of the shape parameter ξ. Assuming that Y follows a GPD 
distribution, the mean excess over threshold u, is a linear function 
of u with slope ( )ξξ −1/ . 
However, sometimes, the mean excess plot can be difficult to 
interpret, making the decision subjective (COLES, 2001). As an 
example, in Figure 2, a linear tendency for a threshold above u>5 
meters is observed at the HIPOCAS node 1193, located at the 
north of the Minorca island, but a more precise value is difficult to 
obtain.  
To avoid the subjectivity in the threshold selection, we use an 
alternative diagnostic method known as the W-statistic plot 
(SMITH, 2003). The W-statistic is defined as, 
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This method is based on, if all assumptions are correct, including 
the selected threshold u and the time span Δt, then Wi are also 
independent and exponentially distributed variables with mean 1. 
Figure 3 shows the quantile plot (QQ-plot) for the W-statistic at 
the same HIPOCAS node, for the selected threshold u = 5.2 
meters and Δt = 72 hours. As seen in this figure, expected values 

for W are close to the observed ones with a slope near the unit 
diagonal, indicating the suitability of the selected parameters u and 
Δt.  
The W-statistic was applied at each grid point for different time 
spans, between 12 and 144 hours. Finally, a time span Δt = 72 
hours was selected for the whole area and a value for the threshold 
u corresponding to the 99.5% percentile of the empirical 
distribution was chosen at each grid point. 
 
Model selection 
 

The selection of the simplest possible model that fits the data 
sufficiently well is important. Therefore, we check for every point 
if the contribution of the shape parameter ξ  is statistically 
significant. This is performed using the likelihood ratio test  
(COLES, 2001). With nested models A BM M⊂ ( BM including the 
shape parameter  and 

AM with the shape parameter 0ξ = ), we can 
assure that model 

BM  explains substantially (at the α -level of 
significance) more variability in the data than 

AM   if 

[ ] 2
,12 ( ) ( )B B A A kl M l M αχ −− > , where ( )B Bl M and ( )A Al M  are the 

maximized log-likelihood functions under models 
BM  and

AM , 

respectively, and 2
,1k αχ −

 is the 1-α  quantile of the 2χ  distribution 

with k degrees of freedom.  
Figure 4(a) shows the estimated shape parameter for the 

whole area and 4(b) shows the statistical significance of the 
inclusion of the shape parameter. As see, we can distinguish three 
different areas, depending on the value of the shape parameter ξ . 
The dark color in Figure 4(b) reveals that for this area, it is not 
significant the inclusion of the shape parameter (which 
corresponds to the Gumbel family for the GEV distribution or the 
exponential for the GPD distribution). The western area 
corresponds with a Weibull tail ( 0ξ < ) and the extreme waves in 
the area around Spain has a Frechet tail ( 0ξ > ). Therefore, for 
the area where the inclusion of the shape parameter ξ  is not 
significant we fix the value ( 0ξ = ). 

 
 
 

 
Figure 3.  W statistic quantile plot for u=5.2 meters and a 72 
hours time span at the HIPOCAS node 1193. 

 

Figure 2. Mean excess plot for different thresholds values.  
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Return levels for Hs50  
 
The N-year return level is the average time interval in years 
between successive events of an extreme significant wave height 
being equalled or exceeded. So, the probability that Hs will be 
exceeded in any given year is, 
 

N
xHF s
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being F(x) the values of a cumulative probability distribution 
function and N the return period. Therefore a fifty-year return 
period is equivalent to F (Hs ≥ x) ≈ 0.98. 
For the 1387 HIPOCAS grid points the Hs50 is calculated for the 
GPD-P as,  
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Results for the 50-year return period significant wave height are 
shown in Figure (5). These values are around 11 meters in the 
northern quadrant of the islands while in the southern part are less 
than 8 meters. This is the result of the shadow effect of the islands 
over the intense north fetch produced by the storms. Extreme 
wave heights over the Catalan coast are significantly lower than 
those obtained in the north of the Islands due to the angular 
spreading of the more severe storms. 

 
 

DISCUSSION AND CONCLUSIONS 
 
Deep water wave climate over the Balearic Sea has in general a 
complex pattern as a result of the complex orography of the 
surrounding area. The Mediterranean Sea is well known to be one 
of the most active cyclogenesis areas in the world where the 
climate is mainly conditioned by severe atmospheric forcing 
during winters. The mountains range in the vicinity is a key factor 
controlling the storm track. The role of the Pyrenees in the west 
part and the Alps in the northeast area are decisive boundaries for 
the wind and pressure distribution over the whole basin. The north 
western part and central part of the Balearic Sea are forced by 
northerly winds (mistral) during the main part of the year, while 
the eastern part is generally modulated by a seasonal variability. 

Gale forced mistrals often develop over the Gulf of Genova when 
the passage of the 500 mb thought cross the south eastern part of 
France extending the effects over the whole basin. 
In order to have a rough idea of the behaviour of the storms, the 
intensity and direction of the maximum significant wave height 
for the 44 years data are shown in Figure 6. As seen, prevailing 
directions are from the northeast along the Balearic Sea. This 
result was previously observed by Sotillo et al. (2006) where a 
high wind area was identified along the Western Mediterranean 
from the Gulf of Lions to Northern Algeria and Tunisia. Wind 
speeds for a 100 years return period shows a maximum located in 
the Gulf of Lions with levels of winds up to 30m/s. In the eastern 
part, differences in wave directions are obtained as a result of the 
different storm track pattern over this area. As seen, maximum 
significant wave heights are reached in the Balearic Channel as 
was obtained from the GPD-P distribution.  
 
From the analysis we can conclude that the GPD-P distribution 
provides a good estimation for wave climate analysis. The analysis 
performed provided the spatial variability of the 50-year return 
period significant wave height. The shadow effect of the islands 
and the angular spreading of the storms produce a reduction in the 
magnitude of the higher return levels. 
Results also show a spatial variability of the tail of the extreme 

Figure 5. Spatial distribution of  Hs50 

Figure 4. Spatial distribution of (a) shape parameter ξ and (b) statistical significance of the shape parameter  ξ 
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value distribution: in the western area a bounded tail (Weibull) is 
detected. This can be associated to a homogeneous distribution in 
the intensity of the extreme events. On the other hand, along the 
Spanish littoral, the extreme waves tend to be heavy tail 
distributed (Frechet). This aspect can be related on the two main 
storms that affected this area in September 1983 and November 
2001. 
 
The use of the data from the HIPOCAS reanalysis provides a 
powerful tool for the estimation of the extreme events for a risk 
analysis in the western Mediterranean Sea.  
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Figure 6. Intensity and direction for the highest value at each point 
during  the 44 years data.  
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